
4. S.Z. Dunin and V. K. Sirotkin, "Expansion of a gas-filled cavity in brittle rock with 
allowance for the dilatational properties of the soil," Zh. Prikl. Mekh. Tekh. Fiz., 
No. 4 (1977). 

5. Ya. B. Zel'dovich and Yu. G. Raizer, Physics of Shock Waves in High-Temperature Hydro- 
dynamic Phenomena [in Russian], Nauka, Moscow (1966). 

6. A.A. Zverev and V. S. Fetisov, "Expansion of a gas cavity in a variably compacted dila- 
tating medium," Zh. Prikl. Mekh. Tekh. Fiz., No. 4 (1982). 

7. A.A. Zverev, E. E. Lovetskii, and V. S. Fetisov, "Radiation of an elastic wave in an 
explosion in a variably compacted porous medium," Zh. Prikl. Mekh. Tekh. Fiz., No. 6 
(1983). 

VARIATIONAL PROBLEMS OF RADIATIVE GAS DYNAMICS IN THE 

PRESENCE OF GAS INJECTION FROM A SURFACE 

N. N. Pilyugin and L. A. Prokopenko UDC 533.6.011 

The radiant heat flux to any part of a body moving with supersonic velocity at M ~ 1 
can be reduced by various methods [i, 2]. In connection with this, it is interesting to study 
ways of reducing heat flow to the frontal part of a body. One effective method here is choos- 
ing the form of the body and its flight path so as to minimize its radiant heating. Several 
studies (see the survey [I]) have examined problems concerning optimization of the form of 
a body in the presence of radiative heat transfer (without injection of gas from the surface), 
given different additional restrictions. 

The studies [2-4] obtained relations for radiant flux to a body with allowance for the 
effect of a screening layer of injected gas during the disintegration of a thermally protec- 
tive coating. These relations were obtained on the basis of an asymptotic solution of the 
equations of radiative gas dynamics. The same relations will be used here to formulate varia- 
tional problems of gas dynamics in the presence of injection of gas from a surface. 

Analysis of the problem shows that it is presently efficient to solve variational prob- 
lems and perform comparative analyses by using an approach in which the first step involves 
employing approximate expressions for the radiative heat-transfer coefficients and pressure 
for the body that are found on the basis of analytic and numerical solutions of the equations 
of radiative gas dynamics. After the solution of the corresponding variational problem in 
the second step, the gas-dynamic parameters and aerodynamic characteristics can be calculated 
more accurately on the basis of established numerical methods of solution with allowance for 
the spectral properties of the gas. 

The thus-obtained preliminary results point the way to practicable methods for solving 
problems involving a reduction in the thermal loads on aircraft by efficiently selecting 
their aerodynamic shapes and the distribution of the gas injection. 

Correlations to Calculate Radiant Fluxes to the Body. Using the approximation of a lo- 
cally uniform plane layer when calculating radiative heat transfer in a shock layer and assum- 
ing the surface of the body to be diffusely reflecting, we have the following for the radiant 
flux to the surface of the body [2]: 

S ' ' qn(t)=~ d~'~v 2 B ~ E 2 ( x . ~ ) d ' ~ v - - B . ~ ( T ~  , 

0 

z c z~ 

S ' ' = -= _ d z ,  % e  k ~ d z  , "c~, s 
0 0 

(1) 
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49-54, May-June, 1989. Original article submitted December 29, 1987. 
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where sv is the spectral emissivity of the surface; By is the spectral intensity of Planck 
radiation; z c and z s are the geometric dimensions of the injection layer and the shock layer 
as a whole; Ez(t) is a second-order integroexponential function; T w is the temperature of 
the body; t and z are the coordinates along the surface of the body and along a normal to 

z 

it; Tv---- k~dz is the optical coordinate; k v' is the spectral absorption coefficient, with 
0 

a correction for forced emission; ~Vc and TVs are the optical thicknesses of the layer of 

injected gas and the entire shock layer. For conditions of hypersonic entry into the at- 
mosphere, Bv(T w) is small compared to the first term in (i). It is evident from (i) that 
the radiant flux to the body can be reduced by using coatings that have low values of e v. 
We then use the generally accepted propositions gv = I, Bv(Tw) ~ 0 and the approximation of 
the integral exponent E 2 (~v) -- exp (-2xv). Considering that, under strong injection condi- 
tions [4], the optical thickness of the injected vapors ZVc is great in the ultraviolet part 

of the spectrum v > v I and that the absorption coefficient kvc in this frequency range de- 

pends slightly on frequency and XVc = Xc(t), we find that 

qR (t) = 2zr .f dvq,.r (t) exp ( - -  2"~c (t)). ( 2 ) 
O 

The attenuation factor for the injection layer 

I i t q~ (t) dr) K = qR(t) -~ exp(--2~-~ (t)) qr = 2~r 
qc (t) 

The case when K(t) = const was examined in [3, 5]. Here we study variational problems~ 
when the function K(t) changes due to natural or forced injection of a substance from the 

zr 

surface. To calculate the optical thickness of the injected gas Tc(t)~- IkSdz" it is neces- 
O 

sary to have the solution of the equations of radiative gas dynamics in the injection layer. 
The numerical solutions in [6, 7] showed that radiative transfer in the injection layer af- 
fects the temperature profile and other parameters within a fairly narrow region around the 
contact surface -where, generally speaking, it is necessary to account for the influence 
of viscous effects as well. Thus, for our purposes, we will use the asymptotic solution [8~ 
9] in an injection layer obtained without the effect of radiative transfer. In von Mises 
variables, the required expressions take the form 

u(x ,  ~) ---- [h~(x) - -  h(x ,  .~)]~/2, 
h (x, ~) _ [ p (x) ](v-~)/v 
...... h~ --I.7~1 ' p = P T '  h---- v p ?--i p'  

v L-Y07 j 

Here, the optical thickness 

(3) 

In these expressions, s ~y are coordinates directed along the surface of the body and 
along a normal to it; uV~~w and VVw0 are the components of velocity in the direction of 
these coordinates; PPw~ is the density of the gas; p~V~2p is pressure; hp~V~2/pw is enthalpy; 
6 = Pw Vw 2/P~V~ 2 is t~e injection parameter; s is the characteristic dimension ~f the bod �9 
TRA/s ~s ~emperature; R A is the universal gas constant; y is the ratio of the heat capaclt~es 
of the injected gas; r~ is the coordinate of the surface of the body from the symmetry axis; 
the subscript w denotes quantities on the surface of the body; ~ denotes quantities in the 
incoming flow; 0 denotes quantities at the critical point. 
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Integrating the flux (2) over the lateral surface of the body, we find the total radi- 
ant f l u x  

l L 

J f dz : 2n qRydt, t g a = y ~ ,  QR=2n qRYeos~ (5) 
o o 

where x and y are rectangular coordinates connected with the critical point of the body; y = 
y(x) is the equation of the generatrix of the body; t is the coordinate along its surface; 
L is the length along its generatrix; s is the length along the x axis; R is the radius of 
the middle of the body. With allowance for the assumptions made and with the use of qR(t) 
from [2], Eq. (5) takes the form 

Io 

~R2Cno (r) PooV~ Ia,  
OR : 210 2 

1 

2 (n @ 4) I -]- t dt, ] = (n + 5)/(n @ 4). 
o 

The resulting dimensionless functional 

i+ T 

.~2 . 2 '  " ( n + 4 )  

(1 --  IV) exp (-- 2"re (~)), ~1r = dWcl~, B = Bol/ro, 

+~n~d~ l 7-n~ x 

@ t] 1/(n+4) 

(6)  

Here, �9 = 2R/s is the relative thickness of the body; q = y/R and g = x/s are dimensionless 
coordinates; n is the approximation constant in the Planck absorption coefficient; B 0 = 
r(n + 4). 

Formulation of Variational Problems. It is evident from the correlative relations for 
radiant flux (6) that the screening properties of the injected layer are characterized by 
the optical thickness Tc($), which depends on the pressure distribution on the surface of 
the body, the nature of the gas, the form of the body, and the injection law G(x) = pwVw(X). 
The relations which have been found make it possible to formulate several new variational 
problems in order to determine the role of the injected gas in the reduction of radiative 
heat transfer: I) find functions N($) and G($) for which the functional I R from (6) takes 
the lowest value and which satisfy the specified boundary conditions q(0) = 0, q(1) = l, and 
(as an example) the given total discharge of the injected gas 

I 

2g S G (~) ~ (~) ~f  I + ~ d~ = R~; 
o 

2) with a prescribed injection law G(~) and assigned boundary and isoperimetric conditions, 
find the optimum form of the body n($) which will ensure a minimum value of IR; 3) find the 
optimum injection law G($) which will ensure the maximum value of optical thickness ~c(s 
with a given length of the body s a given shape q = q(g), and a given discharge of the in- 

jected gas R I = const. 

Variational problems with other restrictions can be studied within the framework of these 
formulations, including problems with restrictions on the volume of the body, the ballistic 
factor, the area of the wetted surface, the momentum or energy of the injected gas, etc. To 
illustrate, we will stop to discuss several examples. 

Solution of a Problem of Minimizing Radiant Flux for a Power-Law Thin Body. We will 
examine the determination of the optimum injection law that will ensure the shape of the "ef- 
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TABLE 1 

0 
4 
8 

3,33 
6,00 
8,67 

~ o p t  

0.979 
01984 
0,988 

It, l 

0,984 
0,996 
0,998 

it (Zop t 

0,055 0,927 
0,024 0,957 
0,016 0,969 

f I~ ~opt 

0,945 0,183 0,911 
0,989 0,065 0,948 
0,995 0,040 0,963 

S, l 

0,933 [ 0,2~ 
0,987 I 0,078 
0,994 1 O,048 

fective" body formed as a result of injection which corresponds to the minimum total radiant 
flux to the lateral surface. The "effective" body formed as a result of injection will be 
assumed to be thin, i.e., �9 << i. Then we can use the limiting expression obtained in [i0] 
to determine the total radiant flux to the surface of the "effective" body (surface of con- 

tact discontinuity). From (6) 

i 

Q~ = l-[oobknR ~ I ,  l = .  (1 -- ~) ~1~11 d~, 
0 

m : 2 ( n @ 4 )  @ 3 ,  k = (n @4)  -~,~1 : g / R ,  ~ = x/I.  

Here, x and y are the coordinates along the direction of motion of the incoming gas flow and 
perpendicular to this direction; s is the length of the "effective" body; R is the radius 
of its middle. The remaining quantities were determined in [i0], where the authors optimized 
the aerodynamic shapes in the class of thin power-law bodies with different isoperimetric 
conditions. These results are fully valid in our case for the "effective" body. The form 
of the actual body is calculated with allowance for the data in [i0], the thickness of the 
injection layer in accordance with Eq. (3), and the energy balance 

q~(.~) exp (--2~(~)) : G~($)Hef ,  (7) 

For power laws of injection and power-law bodies 

y (x) =/~x ~, 1/2 ~ ~ ~ l,  G~ (x) = ax ~, y~ = l~'~z (~-~), p (z) = y~ 

the expression for z c is simplified. With the substitutions t/x = v, a = (i - ~)(2(y - i)/~), 
by calculating the integrals we obtain 

As a f i r s t  a p p r o x i m a t i o n ,  c o n d i t i o n  (7 )  o f  e n e r g y  b a l a n c e  on t h e  s u r f a c e  o f  t h e  body 
g i v e s  q c ( $ )  = G($ )Hef"  Us ing  t h e  r e l a t i o n  qc (X)  = ( y x ' )  ~ f r o m  [ 2 ] ,  we f i n d  t h e  r e l a t i o n  b e t -  
ween t h e  e x p o n e n t s  ~(~ - 1) = ~, s = ( 2 / 3 ) ( n  + 5 ) ,  ~ + 3 - 2~ = aop t .  

T a b l e  1 shows v a l u e s  o f  ~ and ~ c o r r e s p o n d i n g  t o  d i f f e r e n t  % and aop t f o r  d i f f e r e n t  i s o -  
p e r i m e t r i c  c o n d i t i o n s  when t h e  r a d i u s  and l e n g t h  o f  t h e  body ,  t h e  v o l u m e - a n d  l e n g t h  o f  t h e  
body ,  and t h e  a r e a  o f  t h e  w e t t e d  s u r f a c e  and t h e  l e n g t h  a r e  g i v e n .  

I t  f o l l o w s  f rom t h e  c a l c u l a t i o n s  t h a t  an i n c r e a s e  in  s i s  a c c o m p a n i e d  by a d e c r e a s e  in  
t h e  a b s o l u t e  v a l u e  o f  t h e  e x p o n e n t  ~ c h a r a c t e r i z i n g  t h e  d i s t r i b u t i o n  o f  i n j e c t i o n .  I t  s h o u l d  
be n o t e d  t h a t  t h e  fo rm o f  t h e  body i s  c l o s e  t o  c o n i c a l .  The body i s  mos t  b l u n t  w i t h  a s s i g n e d  
S and s while it is sharpest with assigned R and ~. At the nose of the body, G w ~ ~. This 
is connected with violation of the proposition that the body is thin, but it does not interfere 
with calculation of the aerodynamic characteristics of the body. 

Solution of the Problem of the Maximum Optical Thickness of the Injection Layer_z - . We 
will examine the following problem. Find optimum functions n(g) and G(g) which will ensure 
the maximum optical thickness Tc(s with a given discharge of the injected gas R~ = const. 

Using (3) and (4) and the necessary conditions for the existence of the extremum, we 
find that the solution of the Euler equation is a cone. Here, due to the linear dependence 
of Tc(s on G($), the form of the latter is not found from the Euler equation. If we assume 
that G(~) = const, then its value can be determined from the specified discharge, while the 
solution of the Euler equation is found in parametric form. The solution of this problem is 
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found for power laws of injection and power-law thin bodies. The functional Zc(~) has the 
form 

To (z) = B - -  

al~-Zf~+a 

k2~ 2 

v~t+ fC;..~(l_t~) du 

r ~ _ v  7 "  - 

Using expansions into a series, we obtain the approximate expression 

B~,z ,~+~-~  2 1 (c~ - -  (2  (~, _ 1)/~,) (1 - [~)). ( 8 )  

The total rate of flow of the substance across the lateral surface 

2akal~+~+l/(~ + ~ + i) = Rp (9) 

With a specified value of 6, the condition of the maximum of Xc(s from (8) and (9) is 
reached at ~opt = (i - 6)/7. The sufficient condition for the existence of the extremum 
~2~c/8~2 = -273 confirms that this value of p ensures the maximum of the function <c(s If 

and 6 are arbitrary, then ~c(s has a maximum at D = (I - 6)/7, while 6 is determined from 
the necessary condition of the existence of the extremum ~c(s 8/i/~- ~(4 - 38 - 382 - 
63 ) = 0. This equation has the roots 61 = 0 and 82 3 = 5 I/s - i. The first root obviously 
has no physical meaning, while the second root ~2 ='0.73 is the optimum value of the injection 
index Popt = 0.2. 

The simplest solutions were obtained above. A more complete solution of the above- 
stated variational problems can be found by well-known numerical methods [11-13]. 
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